Floating nematic phase in colloidal platelet-sphere mixtures

نویسندگان

  • Daniel de las Heras
  • Nisha Doshi
  • Terence Cosgrove
  • Jonathan Phipps
  • David I. Gittins
  • Jeroen S. van Duijneveldt
  • Matthias Schmidt
چکیده

The phase behaviour of colloidal dispersions is interesting for fundamental reasons and for technological applications such as photonic crystals and electronic paper. Sedimentation, which in everyday life is relevant from blood analysis to the shelf life of paint, is a means to determine phase boundaries by observing distinct layers in samples that are in sedimentation-diffusion equilibrium. However, disentangling the effects due to interparticle interactions, which generate the bulk phase diagram, from those due to gravity is a complex task. Here we show that a line in the space of chemical potentials µ(i), where i labels the species, represents a sedimented sample and that each crossing of this sedimentation path with a binodal generates an interface under gravity. Complex phase stacks can result, such as the sandwich of a floating nematic layer between top and bottom isotropic phases that we observed in a mixture of silica spheres and gibbsite platelets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bulk fluid phase behaviour of colloidal platelet-sphere and platelet-polymer mixtures.

Using a geometry-based fundamental measure density functional theory, we calculate bulk fluid phase diagrams of colloidal mixtures of vanishingly thin hard circular platelets and hard spheres. We find isotropic-nematic phase separation, with strong broadening of the biphasic region, upon increasing the pressure. In mixtures with large size ratio of platelet and sphere diameters, there is also d...

متن کامل

Phase behaviour of binary mixtures of diamagnetic colloidal platelets in an external magnetic field.

Using fundamental measure density functional theory we investigate paranematic-nematic and nematic-nematic phase coexistence in binary mixtures of circular platelets with vanishing thicknesses. An external magnetic field induces uniaxial alignment and acts on the platelets with a strength that is taken to scale with the platelet area. At particle diameter ratio λ = 1.5 the system displays paran...

متن کامل

Nematic phase transitions in mixtures of thin and thick colloidal rods.

We report experimental measurements of the phase behavior of mixtures of thin (charged semiflexible fd virus) and thick (fd-PEG, fd virus covalently coated with polyethylene glycol) rods with diameter ratio varying from 3.7 to 1.1. The phase diagrams of the rod mixtures reveal isotropic-nematic, isotropic-nematic-nematic, and nematic-nematic coexisting phases with increasing concentration. In s...

متن کامل

Phase Separations in Mixtures of a Nanoparticle and a Liquid Crystal

Liquid crystal suspensions including variousmicroand nano-colloidal particles have recently been received great attention for many practical applications such as nanosensors and devices, etc. When large colloidal particles of micronscale are dispersed in a uniform nematic liquid crystal phase, the colloidal particles disturb a long-range orientational order of the nematic phase. For a strong an...

متن کامل

Density functional theory for colloidal mixtures of hard platelets, rods, and spheres.

A geometry-based density-functional theory is presented for mixtures of hard spheres, hard needles, and hard platelets; both the needles and platelets are taken to be of vanishing thickness. Geometrical weight functions that are characteristic for each species are given, and it is shown how convolutions of pairs of weight functions recover each Mayer bond of the ternary mixture and hence ensure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012